第18回関西蔵前懇話会

化学と物理の境界学問

櫻井敦教(08物理卒)

京都大学大学院 理学研究科 化学専攻

私自身の経歴

2004年 東工大 理学部 入学

2005年 同物理学科所属

2008年 東工大理学部物理学科卒業(松下研)

同年 京大院 理学研究科 化学専攻 修士課程進学

量子化学研究室(谷村研)

2010年 京大院 理学研究科 修士課程修了

同年 同博士課程進学

化学 vs 物理

化学者は、いい加減な方法論で優れた物質を 扱う人間である。

物理学者は、優れた方法でいい加減な物質を 扱う人間である。

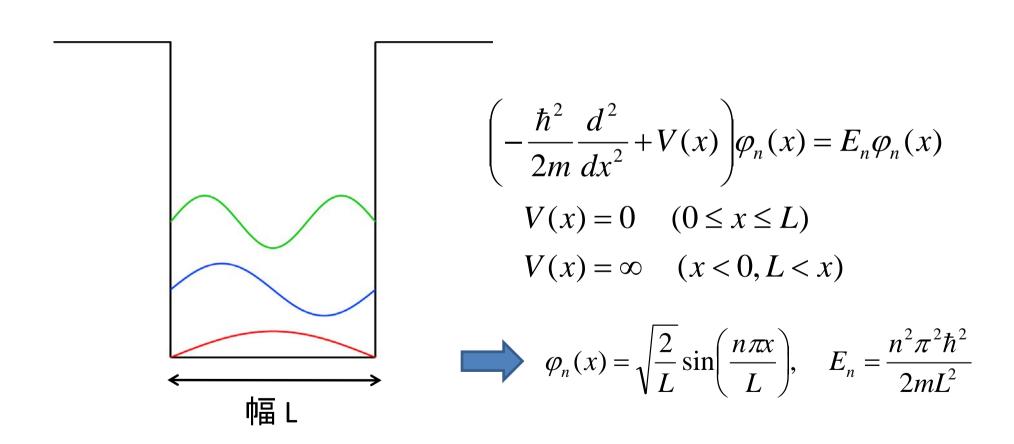
物理化学者は、いい加減な方法論でいい加減な物質を扱う人間である。

―ハンス・ランドルト(物理化学者)

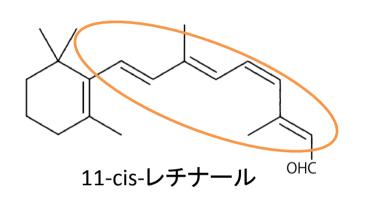
化学 vs 物理

化学

- 物質個々の性質を探求
- 実験が重要
- 教科書の名前を見ると対象とする物質による分類が多い


有機化学、無機化学、物理化学、 生化学、分析化学etc...

物理


- 物質個々の性質には依らない普遍的な原理・法則を 探求
- 実験・理論ともに重要
- 教科書の名前を見ると手 法による分類が多い

力学、電磁気学、熱·統計力学、 波動、流体、etc...


井戸型ポテンシャル中の自由粒子

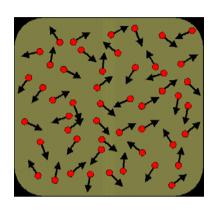
井戸型ポテンシャルをレチナールに 適用してみると・・・・

- 炭素原子10個の鎖長 L = 1.5 nm
- 電子の質量 m = 9.1×10⁻³¹ kg

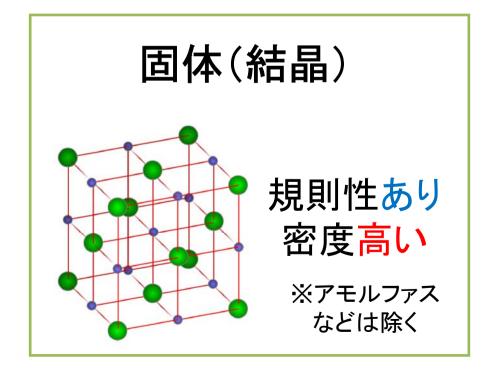
all-trans-レチナール

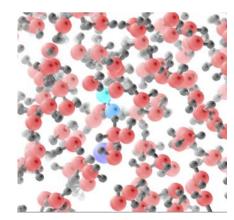
吸収波長 680 nm

実際の吸収波長 500 nm にかなり近い

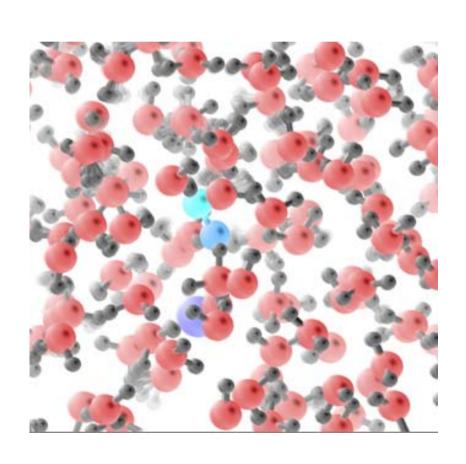

化学物理とは?

様々な化学現象を物理的アプローチで解析する


- 電気伝導度や磁化などの物性研究
- 液体や気体の相転移
- レーザー分光などの量子化学
- 生体分子の機能探査 etc


気体

規則性なし密度低い



液体

規則性なし密度高い

液体は多数の分子が複雑に相互作用する

ランダムな運動が 誘起される

ブラウン運動

慶応義塾大学 物理実験のHPより引用(ポリスチレンの水中での運動) http://www.sci.keio.ac.jp/gp/87B7D75A_BCC35D66.html

ブラウン運動

一個一個の分子の運動を考えることはできない

分子が多数あることを逆手に利用し、 溶媒分子の運動を統計的に記述する

ブラウン運動が見られる例

- 液体分子の分子内・分子間振動
- 導体中の電子の運動
- 電子回路のノイズ
- 気体中におかれた鏡の微小振動
- 分子モーター(タンパク質) etc

気体中につるした小さな鏡

鏡が気体分子とランダムに 衝突しその揺れに応じて 光の経路が変わる

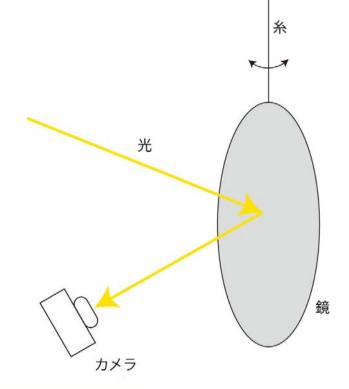
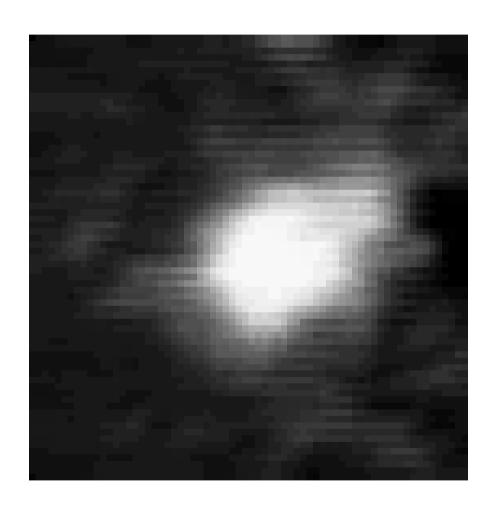
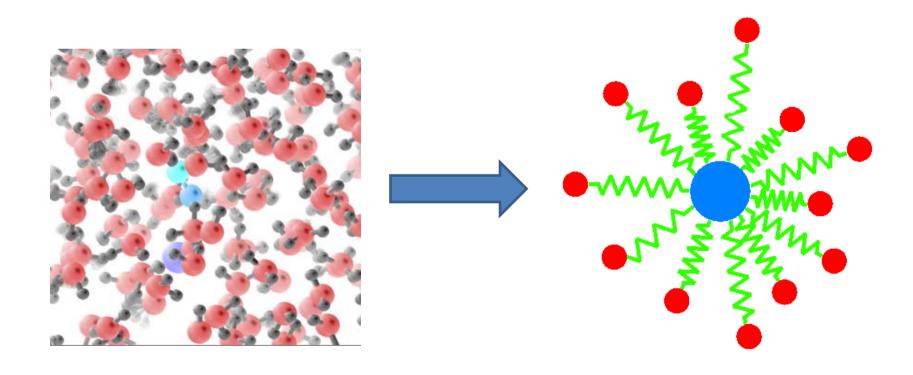



図 5.1 Brown 運動の例(Kappler, E: Ann. Physik, 11, 233(1931)による)


F₁モーターの回転の様子

東工大 総合理工学研究科 環境理工学創造専攻 吉田研究室より引用 http://www.res.titech.ac.jp/~seibutu/main.html?right/~seibutu/projects/f1_j.html

ブラウン運動のモデル

見たい分子に多数の溶媒分子が ばねでつながったモデル

モデルを用いることの強み

- 多数の溶媒分子を統計的に扱うことにより、 単純な記述が得られる。
- 一見すると全く異なるようにみえる現象でも、 その根底に同じ物理的背景が存在する場合、 統一的な視点から現象を見ることができる。

参考文献

- 谷村 吉隆
 「化学物理入門—経路積分法と非平衡統計力学—」
 サイエンス社(別冊数理科学)、2002年
- 米原 富美子「ブラウン運動」共立出版(物理学 One Point)、1986年
- 合原 一幸、岡田 康志「1分子生物学―生命システムの新しい理解―」岩波書店、2004年
- リングマン、シュミーデル著、山崎 昶訳 「西洋化学者こぼれ話」裳華房、1993年