関西蔵前懇話会 '13.6.13

中性子ラジオグラフィによる燃料電池研究

村川 英樹

神戸大学大学院 工学研究科 機械工学専攻

自己紹介

出身地:神奈川県横浜市 2001年3月 東京工業大学 工学部 機械科学科卒

2006年3月 東京工業大学 大学院理工学研究科 原子核工学専攻 学位取得 2006年4月~2007年9月 学術振興会特別研究員(PD) レンセラー工科大学(米国)客員研究員 2007年10月~ 神戸大学大学院 工学研究科 助教 現在に至る

関西蔵前懇話会 2013年6月13日

燃料電池の種類

	-			-		
種類	固体高分子型 (PEFC)	リン酸型 (PAFC)	溶融炭酸塩型 (MCFC)	固体酸化物型 (SOFC)		
電解質膜	高分子膜	リン酸水溶液	溶融炭酸塩 Li ₂ CO3, K ₂ CO ₃ , Na ₂ CO ₃	固体電解質 ZrO ₂ (Y ₂ O ₃)		
作動温度	60 ~ 80 °C	190 ~ 200 °C	600 ~ 700 °C	800 ~ 1000 °C		
燃料	水素 天然ガス(改質) メタノール(改質)	天然ガス(改質) メタノール(改質)	水素 天然ガス 石炭ガス化ガス	水素 天然ガス 石炭ガス化ガス		
酸化剤	酸素(空気)					
電化担体	H⁺	H⁺	CO32-	O ²⁻		
発電効率 (HHV [*])	30~40%	40~45%	50~65%	55~70%		
排熱利用	温水	温水, 蒸気	ガスタービン 蒸気タービン	ガスタービン 蒸気タービン		
特徴	低温動作可能 高出力密度		内部改質が可能	内部改質が可能		
関西蔵前懇話会 2013年6月13日						

燃料電池自動車の普及に向けて

※前提条件:FCVユーザーのメリット(価格・利便性等)が確保されて、順調に普及が進んだ場合

燃料電池実用化推進協議会(FCCJ)HPより http://fccj.jp

固体高分子型燃料電池

固体高分子型燃料電池: <u>Polymer Electrolyte</u> <u>Fuel</u> <u>C</u>ell (PEFC)

- ・100℃以下の比較的低温で動作可能
- ・高出力特性

PEFCの技術的課題

<u>解決すべき技術課題:</u>

- 1. 反応機構の解明・測定評価手法
 - MEA内の観察
 - ・電解質膜の水輸送特性
 - ・ セル運転状態における内部の水の状態計測技術
- 2. 劣化機構解明と対策
 - ・運転条件下での白金溶解の詳細な機構解明
- 3. シミュレーション
 - ・電極反応の理論的取り扱い
 - ・燃料電池内部の現象再現

関西蔵前懇話会 2013年6月13日

研究ターゲット

凝縮水の滞留:

- ・カソード側に凝縮水が存在することによる、PEFCの性能低下の 可能性
- ・抵抗分極の低減には、MEAへ適度な湿分の供給が必要

PEFCでは適切な水管理が重要

可視化用PEFC ··· 材質の違いが発電性能に影響を 及ぼす可能性 MRI ··· 小型で特殊なセルが必要

\bigcirc

金属中の水を計測可能な中性子ラジオグラフィを 用いた発電時のPEFC内水分布計測

関西蔵前懇話会 2013年6月13日

中性子ラジオグラフィーによる可視化と計測

中性子ラジオグラフィの技術開発

可視化領域	小型電	<u>池</u> 20 30	JARI標準 50 70 100	<u>実機</u> 200[μm]		
開発技術	ピンホール 全断面積計測	マイクロCT	ダイナミックCT	高画素数可視化		
計測対象	MEA内水輸送 過渡変化を計測	MEA, GLD内 膜厚方向2次元, 3次元分布の計測	GLD内, 並列流路内 3次元分布の可視化	A4サイズ程度の 燃料電池の可視化		
開発目標	空間分解能: 5 μm	空間分解能 30 μm以下	1秒/1CTの実現 3次元連続計測	A4サイズ程度の計 測可能なシステム		
成果	幅5µmのスリットに よる計測システム	CT計測: 画素寸法12μm	1秒/1CT, 2.6秒毎 の連続CT	4kx4kピクセル のカメラシステム		
発電特性, 圧力損失 → ポットワークモデルによる 成果 気流分布解析手法を構築						
関西藏前懇話会 2013年6月13日						

日本自動車研究所(JARI)準拠 PEFC

ダイナミックCT計測システム

ダイナミックCT計測システム

ダイナミックCT計測例

セルスダックに下から水を注入して、連続して計測 (三次元ボリュームレンダリング結果)

関西蔵前懇話会 2013年6月13日

撮影画像(発電後)

MEA, ガス流路 関西蔵前懇話会 2013年6月13日

発電状態における燃料電池のダイナミックCT

CT再構成結果

セル電圧変化

関西蔵前懇話会 2013年6月13日

CT再構成結果

関西蔵前懇話会 2013年6月13日

液飽和度によるモデルの分類

水によって生じる局所圧力損失

リブ: GDL内で水は均一に分布 Channel: <u>流路とGDL</u>内の水の割合は?

GDL内の水の変化

ネットワークモデルによる解析結果

膜厚方向水分布計測

膜厚方向水分布計測

膜厚方向水举動

膜厚方向水挙動

膜厚方向水分布の時間変化

膜厚方向水分布の時間変化

中性子ラジオグラフィを用いた燃料電池研究について 紹介した.

- ・燃料電池研究のため、中性子ラジオグラフィ技術開発(ダイナミックCT計測、高空間分解能化)に取り組んできた。
- ・電池内の水挙動と電池性能との関係について研究 している。
- ・膜厚方向の水輸送現象の解明は、コスト低減(高電 流密度運転)のためには不可欠な研究課題である.